THE DEVELOPMENT OF WETLAND CONSERVATION AND MANAGEMENT PLAN FOR SUNGAI PULAI

MOHD HUSAINI BIN MOHD HOSNAN

UNIVERSITI TEKNOLOGI MALAYSIA
THE DEVELOPMENT OF WETLAND CONSERVATION AND
MANAGEMENT PLAN FOR SUNGAI PULAI

MOHD HUSAINI BIN MOHD HOSNAN

A thesis submitted in fulfilment of the
requirement of the requirement for the award of the degree of
Master of Engineering (Civil – Environmental Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JULY 2012
My special dedication to my family:

My beloved wife and son,
Masni Salleh and Muhammad Naufal Mohd Husaini
Thank you for all your patient and support

To my lovely mother and father,
Siti Saedah Rahmat and Mohd Hosnan Bin Ali

To my lovely friend,
Staff of ALMA

Thank you for everything
ACKNOWLEDGEMENTS

“In the name of Allah, the most gracious, the most compassionate”

First and foremost, I would like to express my greatest gratitude towards my supervisor, Dr. Mohd Badruddin Mohd Yusof for his encouragement, guidance, advice and motivation. Without his continuous support and guidance in completing this report, it would not have been completed successfully. I would also like to express my deep gratitude towards all staffs of ALMA Architetc and Planner Sdn. Bhd for their help and support.

In the meantime, I would also like to express my appreciation to my family and friends who were supportive all this while. Thank you very much for your support and love. Your help will never be forgotten. For the names mentioned or not mentioned that have involve in completing my master project, Only Allah could pay your kindness. Last but not least, I hope this study will give benefit for further studies in the future.
ABSTRACT

Wetland is one of the most important ecosystems on earth as it improve water quality, control floods, regulate global carbon levels, have significant cultural and recreational values, and also provide habitat for plants and animals uniquely adapted to living in the wet conditions. The basic concern of this study is to identify conservation and compatible wetland areas in Sungai Pulai Johor Ramsar Sites. In other words the study intends to address the conservation principle of sustainable mangrove management. This study evaluates the environmental and land use changes of mangrove forest wetland. The data collection procedure was based on secondary and primary sources. Beside that, there are many acts, enactments and guidelines relevant to the planning and management of mangrove forests and wetlands used. The study area covers Sungai Pulai Mangrove Forest (SPMV) that is the largest riverine mangrove forest in Malaysia. Few developments are taking place rapidly in this sensitive wetland environment with modes concern to the environment. The study identifies areas is SMFR that need to be conserved in the wetlands area; these area areas of high biodiversity that are highly sensitive to human interference. Sungai Pulai determined into Biosphere Zone through regulation and guideline justification. The Biosphere Zone included the core zone, buffer zone and transition zone. The core zone can be categorized into three main area that is protection zone, public zone and conservation zone. For this study, there are three main stages in the production of zoning plans and guidelines for the management of wetlands. Approach adopted in the analysis is an approach to PFCA (Properly functioning Assessment Criteria). This technique involves a set of criteria selected wetlands of potential impacts on habitat and biological. Profiling and analysis for these study covers five (5) major environment variables; Environmentally Sensitive Area (ESA), Buffer Zones, Land use, Biological Environment (Fauna : mammal, bird, fish, mollusc, crustacean and macrobenthos assessment) (Flora : Mangrove, seagrass) and Physical Environment (Water quality and air quality). Matrix analysis was carried out in helping to facilitate the determination of the criteria for each zone. This analysis measures the importance of an area based on the seven main factors, namely the importance of biogeography, natural, ecological importance, economic importance, social importance, planning and scientific interest. The study found that 5,613.921 hectare (26 percent) of the area should belongs to conservation zone, while 6,650.025 hectares (30 percent) can be develop (public zone).
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
<td></td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 3
1.3 Case Study 4
1.4 Aim of The Study 5
1.5 Objectives Of The Study 5
1.6 Significance of The Study 5
1.7 Scope on The Study 7
1.8 Limitation on The Study 8
2.0 LITERATURE REVIEW

2.1 Introduction
2.2 Definition of Wetlands
 2.2.1 Significance of Wetlands
 2.2.2 Importance of Wetlands Management
 2.2.3 Classification of Wetlands and Mangrove Forest
 2.2.4 Mangrove Forest Community
2.3 Wetlands Management
 2.3.1 Wetlands Management Concept
 2.3.2 Wetlands Management System and Guidelines
 2.3.3 Code of Conduct for the Sustainable Management of Mangrove Ecosystem
2.4 Historical Perspective of Wetlands Assessment
 2.4.1 Wetland Conservation In United State
 2.4.2 Wetland Assessment Techniques
 2.4.3 Wetland Zoning Plan
 2.4.3.1 Stage 1 - Designation of Biosphere Zone
 2.4.3.2 Stage 2 - Setting Zoning Plan Area
2.5 Properly Functioning Criteria Assessment (PFA)
2.6 Matrix Analysis
2.7 Guideline and Legislation for Wetland Management in Malaysia
 2.7.1 Policy and Strategy
 2.7.2 Legal Framework
 2.7.3 Parameters and Standards
 2.7.3.1 Water Quality
 2.7.3.2 Air Quality Parameters
2.8 Mangrove Forest
 2.8.1 Mangrove Forest in The World
 2.8.2 Mangrove Forest in South East Asia
2.8.2 Mangrove Forests in South Johor 54

2.9 Natural Resource and Biodiversity 56
 2.9.1 Environmentally Sensitive Area (ESA) 56
 2.9.1.1 Definition 56
 2.9.1.2 Classification 56
 2.9.1.3 ESA Ranking 57
 2.9.2 Buffer Zones 58
 2.9.2.1 Definitions 58
 2.9.2.2 Buffer Zone Criteria 58
 2.9.3 Land Use 58
 2.9.3.1 Land Status 59
 2.9.3.2 Future Land Use and Committed Development 59
 2.9.4 Biological Environment 60

2.10 Natural and Green Environmental in Southern Johor 60
 2.10.1 Protecting Existing Natural Environment 61
 2.10.2 Environmental Sensitive Area (ESA) 62
 2.10.3 Protecting the RAMSAR Sites 67
 2.10.4 RAMSAR Sites of Tanjung Piai, Sungai Pulai and Pulau Kukup 68

2.11 The Study Area 69
 2.11.1 Sungai Pulai Location 70
 2.11.2 Sungai Pulai Forest Reserve 72
 2.11.3 Treats and Conservation Efforts 73
 2.11.4 Sungai Pulai Management System 74
 2.11.5 Implications on Ramsar Site and Study Area Gazzette 75
 2.11.6 Committed Development at Sungai Pulai Wetland 76
3.0 RESEARCH METHODOLOGY

3.1 Introduction 79
3.2 Scope of The Study 81
3.3 Data Collection 82
 3.3.1 Secondary Data 83
 3.3.1.1 Fauna Assessment 83
 3.3.1.2 Flora Assessment 88
 3.3.2 Primary Data Collection 91
 3.3.2.1 Water Quality 91
 3.3.2.2 Air Quality 93
3.4 Development of Zoning Plan and Guidelines 95

4.0 RESULTS AND DISCUSSION 97

4.1 Introduction 97
4.2 Environmentally Sensitive Area (ESA) 98
 4.2.1 Sg. Pulai RAMSAR Site 107
 4.2.2 Eagle Nesting Ground 107
 4.2.3 Sg. Pulai Catchment 108
 4.2.4 Mudflat Area 108
 4.2.5 Seagrass Bed 108
 4.2.6 Aquaculture Areas 109
 4.2.7 Population Areas 109
 4.2.8 Marine Structure 109
 4.2.9 Buffer Zones 110
4.3 Land Use 112
 4.3.1 Existing Land Use 112
 4.3.2 Future Land Use and Commited Development 116
4.4 Biological Environment 118
 4.4.1 Fauna 118
 4.4.1.1 Mammal 118
4.4.1.2 Bird 121
4.4.1.3 Fish 124
4.4.1.4 Mollusc and Crustacean 125
4.4.1.5 Macrobenthos 126
4.4.2 Flora 126
4.4.2.1 Mangrove 126
4.4.2.2 Seagrass 128
4.5 Physical Environment 129
4.5.1 Water Quality Status 129
4.5.1.1 Sg. Dinar 131
4.5.1.2 Sg. Chengkeh 131
4.5.1.3 Sg. Pulai 131
4.5.1.4 Sg. Boh 132
4.5.1.5 Cage Culture Farm 132
4.5.1.6 Pollution Source 132
4.5.2 Air Quality 133
4.6 Wetland Zoning Plan 133
4.7 Matrix Analysis 138

5.0 CONCLUSION AND RECOMMENDATION

5.1 Introduction 143
5.1.1 Result and Analysis 143
5.1.2 Criteria for Prediction of Impacts 144
5.2 Recommendation 145
5.2.1 Environmentally Sensitive Area (ESA) 145
5.2.2 Eagle Nesting Ground 146
5.2.3 Seagrass Bed 147
5.2.4 Population Areas 147
5.2.5 Water Quality 148
5.2.6 Air Quality 149
5.2.7 Flora and Fauna 149
5.3 Proposed Management Plan 150
5.3.1 Engineering Technique / Approach 151
5.3.2 Policies and Guidelines Approaches for 153
 Mangrove Biodiversity Conservation And
 Management
5.4 Conclusion 154

REFERENCES 155
Appendix A - C 158-
 160
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of the Wetlands</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Logical Framework Analysis</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Justification of Biosphere Zoning Plans and Legislation</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Relevance Criteria Zone and Approach of PFCA</td>
<td>35</td>
</tr>
<tr>
<td>2.5</td>
<td>Instruction Relevant with Appropriate Research Areas</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Parameters for The Water Quality Assessment</td>
<td>47</td>
</tr>
<tr>
<td>2.7</td>
<td>Malaysia Marine Water Quality Criteria and Standard</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>(MWQCS)(Class 2) for Malaysia</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Marine Water Quality Criteria for the ASEAN Region (For Aquatic Life Protection)</td>
<td>49</td>
</tr>
<tr>
<td>2.9</td>
<td>A Summary Table of The Main Threats to Mangroves, By Region</td>
<td>51</td>
</tr>
<tr>
<td>2.10</td>
<td>Mangrove Forest in The World</td>
<td>53</td>
</tr>
<tr>
<td>2.11</td>
<td>Mangrove Forest in South East Asia</td>
<td>53</td>
</tr>
<tr>
<td>2.12</td>
<td>The Extent of Mangrove Forest Areas in Johor (ha)</td>
<td>55</td>
</tr>
<tr>
<td>2.13</td>
<td>Categories of ESA</td>
<td>56</td>
</tr>
<tr>
<td>2.14</td>
<td>ESA Ranking</td>
<td>57</td>
</tr>
<tr>
<td>2.15</td>
<td>Flora and Fauna Assessment</td>
<td>60</td>
</tr>
<tr>
<td>2.16</td>
<td>ESAs and Its Functions</td>
<td>65</td>
</tr>
<tr>
<td>2.17</td>
<td>ESAs Ranking in Iskandar Malaysia</td>
<td>66</td>
</tr>
<tr>
<td>2.18</td>
<td>RAMSAR Sites in SJER</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>Fish Assessment Stations</td>
<td>85</td>
</tr>
<tr>
<td>3.2</td>
<td>Mollusc and Crustacean Assessment Stations</td>
<td>86</td>
</tr>
</tbody>
</table>
3.3 Macrobenthos Assessment Stations 87
3.4 Mangrove Assessment Stations 88
3.5 Seagrass Assessment Stations 89
3.6 Water Quality Sampling Stations 91
3.7 Air Quality Sampling Stations 93
4.1 ESA Sungai Pulai RAMSAR Site 99
4.2 ESA Sungai Pulai Forest Reserve 100
4.3 ESA Eagle Nesting Area 101
4.4 ESA Sungai Pulai Catchment 102
4.5 ESA Mudflat Area 102
4.6 ESA Seagrass Bed 103
4.7 ESA Aquaculture Area 104
4.8 ESA Population Area 105
4.9 ESA Maritime Structure 106
4.10 Buffer Zones Criteria for The Sungai Pulai Area 110
4.11 River Reserve Criteria 111
4.12 Future Land use and Committed Development 116
4.13 List of Mammals Found within Sungai Pulai Area 119
4.14 List of Bird Species Found within Sungai Pulai Area 123
4.15 List of Fish Species Found within the Sungai Pulai Area 124
4.16 Table of Mollusc Species Found within Sungai Pulai Area 125
4.17 List of Crustacean Species Found within Sungai Pulai Area 125
4.18 Macrobenthos Species Found Within the Sungai Pulai Area 126
4.19 List Of Mangrove Species Found Within The Project Area 127
4.20 List of Mangrove Associated Species Found within the project area. 128
4.21 Seagrass Species Found within the Proposed Project Area. 129
4.22 TSS level for PEIA and SEIA Studies 130
4.23 Air Quality Results 133
4.24 Biosphere Zone Guidelines 138
4.25 Matrix Analysis of The Significance of Each Zone 140
4.26 Detail of Criteria Zone Category 142
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diversity of Species In The Study Area</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Seagrass and Coral reefs</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Sungai Pulai Mangrove Forest</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Ramsar Site Area Biosphere Zone Proposed by the Ramsar Convention, 1971.</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Wetlands Zoning Plan Flow Chart.</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Wetlands Zoning Plan Area Concept</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Analysis Stage</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>The River Basin of the Four Main River in Iskandar Malaysia</td>
<td>62</td>
</tr>
<tr>
<td>2.9</td>
<td>Dugong or Sea Cow Found of the Sungai Pulai Estuary</td>
<td>64</td>
</tr>
<tr>
<td>2.10</td>
<td>Area With ESA Ranking</td>
<td>66</td>
</tr>
<tr>
<td>2.11</td>
<td>RAMSAR Sites of Iskandar Malaysia</td>
<td>69</td>
</tr>
<tr>
<td>2.12</td>
<td>Study Area</td>
<td>70</td>
</tr>
<tr>
<td>2.13</td>
<td>Map of Sungai Pulai Ramsar Site</td>
<td>76</td>
</tr>
<tr>
<td>2.14</td>
<td>Petrochemical and Maritime Industrial Park Project At Tanjung Bin</td>
<td>77</td>
</tr>
<tr>
<td>3.1</td>
<td>The Methodology Flow Chart</td>
<td>81</td>
</tr>
<tr>
<td>3.2</td>
<td>Location for Mammal Assessment Stations</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>Fish Assessment Stations</td>
<td>85</td>
</tr>
<tr>
<td>3.4</td>
<td>Mollusc and Crustacean Assessment Stations</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>Location for Mangrove Assessment Stations</td>
<td>89</td>
</tr>
<tr>
<td>3.6</td>
<td>Locations for Seagrass Assessment</td>
<td>90</td>
</tr>
</tbody>
</table>
3.7 Water Quality Sampling Station 93
3.8 Air Quality Sampling 94
3.9 Analysis Framework 95
4.1 Sungai Pulai Ramsar Site 99
4.2 Sungai Pulai Forest Reserve 100
4.3 Eagle Nesting Area 101
4.4 Mud Flat 102
4.5 Sea grass Bed 103
4.6 Aquaculture Area 104
4.7 Population Area 105
4.8 Marine Structure 106
4.9 Buffer Zone Characterization 111
4.10 Land Use Within 3 km Sungai Pulai Area. 115
4.11 Committted Development Within 3 km Zone of Impacts (ZOI). 117
4.12 Central Zone 135
4.13 Habitat of Species 135
4.14 Economic 136
4.15 Surrounding Land Use 136
4.16 Biosphere Boundary 137
4.17 Zoning Plan of Sungai Pulai Wetland 141
5.1 Proposed Location for Double-Layered Silt Curtain and Silt Fence 152
5.2 Proposed Strategies and Action for Mangrove Biodiversity Conservation and Management 153
LIST OF ABBREVIATION

BPK Blok Perancangan Kecil
CBD Convention on Biodiversity
CCD Convention to Combat Desertification
CITES Convention on the international Trade in Endangered Species (UN)
CMS Convention on Migratory Species
DID Jabatan Pengairan dan Saliran
 (Irrigation and Drainage)
DOE Department of Environment
ESA Environmentally Sensitive Area
ESCP Erosion and Sediment Control Plan
GIS Geographical Information System
IM Iskandar Malaysia
IUCN International Union for Conservation of Nature
JPBD Jabatan Perancangan Bandar dan Desa Semenanjung Malaysia
 (Federal Department of Town and Country Planning)
JUPEM Jabatan Ukur dan Pemetaan Malaysia
 (Mapping and Survey Department)
MNS Malayan Nature Society
MWQCS Malaysia Marine Water Quality Criteria and Standard
N0₂ Nitrogen oxide
NEQ Northeast Quadrant
NGO Non Government Organisation
NLP National Land Code
NPP National Physical Plan
NWI National Wetlands Inventory
NWQ Northwest Quadrant
PFC Properly Functioning Criteria
PTNJ Johor National Parks Corporation
PTP Port Tanjung Pelepas
RMAQG Recommended Malaysian Air Quality Guidelines
RMK9 Rancangan Malaysia Ke 9
SEQ Southeast Quadrant
SJER CDP South Johor Economic Region Comprehensive Development Plan
SO₂ Sulphur Dioxide
SPMFR Sungai Pulai Mangrove Forest Reserve
SWQ Southwest Quadrant
TP Totally Protected
TSP Total Suspended Particulate
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN</td>
<td>United Nation</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>VAST</td>
<td>Vegetation Assets, States and Transitions</td>
</tr>
<tr>
<td>WHC</td>
<td>World Heritage Convention</td>
</tr>
<tr>
<td>ZOI</td>
<td>Zone Of Impact</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Sustainable environmental management systems become more complex when the development related of natural ecology, economics, human, and subsystems. The whole world started to care about sustainable development, especially after the world conference “United Nations Conference on Environment and Development” in 1992 in Rio de Janeiro (Moffat, 1996). Management of natural resources in tropical forests is needed due to population demand in developing the forest as the main area for economic activity leading to increasing pressure on the forest, water and soil (Bocco et al., 2004).

Resource planning and management has a complex attribute. This is because of the limited of the resource character and needs to be managed from time to time. It accompanies with the rapid growth of urbanization and urban development that occurs following the demand for resources on the of particular natural resources. The scenarios generate the pollution and affected the areas with high biodiversity, particularly wetlands areas (Yokohari et al., 2000).

Pressure from the development and growth of human population has caused continuous damage to natural resources. It becomes worse when the exploration of
natural resources is done without awareness of the importance of the environment. Management of natural resources is even more difficult for developing countries because of the competition between the development and natural conservation.

People make the demand for high quality of life including good public health, the unpolluted environment, good and safe food and drink, as well as the area of open space for recreation in (Botkin and Beveridge, 1997). This situation requires the successful management of resources effectively and systematically in ensuring the success of well-managed.

Management of natural resources is the interaction between ecological, economic, political and social culture that involves understanding the decision to strengthen natural resource management goals and the initial action to achieve it (Decker, 1997). According to the 2006-2010 Ninth Malaysia Plan (RMK-9), emphasis is given to preventive measures to reduce the negative impact on the environment, intensify efforts to conserve and sustainably manage natural resources.

Exploration for natural resource areas for development needs has caused many problems. Physical development of residential, commercial, utility and agricultural systems is a major influence in changing the original land use, while areas with unique natural wetlands are facing strong pressure, as a result of the development of industrial activities. This has resulted in exploration carried out to make profit. Provisions of the law and regulation set have been limiting the exploration for natural resources. However there is still a shortage of enforcement which caused many problems.

Implementation of the law related to natural management, conservation and preservation of natural environment are also important to serve as the main tool to regulate and drive the success of the management of wetlands. The existence of legislation and guidelines issued by the relevant departments of planning and resource management success is based on the needs and scope of their work. Therefore, the successful of the good management of natural resources depend on the implementation of the law and the guidelines on the management of administrative areas.
1.2 Problem Statement

Wetlands ecosystems are often mistakenly undervalued. Few people realize the range of products derived from freshwater habitats such as wetlands food such as fish, rice and cranberries, medicinal plants, peat for fuel and gardens, poles for building materials, and grasses and reeds for making mats and baskets and thatching houses. These complex habitats act as giant sponges, absorbing rainfall and slowly releasing it over time. Wetlands are like highly efficient sewage treatment works, absorbing chemicals, filtering pollutants and sediments, breaking down suspended solids and neutralizing harmful bacteria (World Wildlife Fund, 2005).

Half of the world's wetlands have already been destroyed in the past 100 years alone (World Wildlife Fund, 2005). Conversion of swamps, marshes, lakes and floodplains for large-scale irrigated agriculture, ill-planned housing and industrial schemes, toxic pollutants from industrial waste and agricultural run-off high in nitrogen and phosphorous pose some of the main threats to wetlands. Among threatened species are several river dolphins, manatees, fish, amphibians, birds and plants. In addition, alien 'invasive' species brought from ecosystems in foreign lands disrupt functions in native ecosystems. Africa alone spends about US$60 million annually to control aquatic invasive species (World Wildlife Fund, 2005).

Traditionally, local communities in mangrove ecosystems collected fuelwood, harvested fish and other natural resources. However, in recent decades many coastal areas have come under intense pressure from rapid urban and industrial development, compounded by a lack of governance or power among environmental institutions. Mangroves have been overexploited or converted to various other forms of land use, including agriculture, aquaculture, salt ponds, terrestrial forestry, urban and industrial development and for the construction of roads and embankments. Mangroves can be affected by several different activities simultaneously, or over time as land use patterns change.
1.3 Case Study

The study area comprises of Johor wetlands that have been declared as wetlands of international importance at the Ramsar convention, namely Sungai Pulai in Southern Johor State not far from Singapore, particularly rich in mangroves and inter-tidal mudflats. These coastal and estuarine sites support a large number of species, notably vulnerable and threatened species, and provide both livelihoods and important functions for the local population.

In Johor, Sungai Pulai Mangrove Forest Reserve (SPMFR) is the largest riverine mangrove system. The SPMFR is managed primarily for commercial wood production using the silvicultural system that requires clear felling of trees under a 20-year rotation. About 80% of the SPMFR consists of mangrove stands less than 20 years of age. The Port of Tanjung Pelepas authority, located at the estuary, works hand-in-hand with environmental groups for the conservation of the estuary (Johor National Park Corporation, 2009).

The site is managed in line with the Integrated Management Plan for the sustainable use of mangroves in Johore. SPMFR is one of the lists in Ramsar Site in Malaysia includes Tasik Bera, Tanjung Piai and Pulau Kukup (Ramsar Convention, 2002). Ramsar is the first of the modern global intergovernmental treaties on the conservation and sustainable use of natural resources for the habitat of humankind in a way compatible with the maintenance of the natural properties of the ecosystem, but, compared with more recent ones, its provisions are relatively straightforward and general.

The degradation and loss of wetlands and their biodiversity has imposed major economic and social losses; and costs to the human populations of these river basins. Thus, appropriate protection and management of the wetlands is essential to enable these ecosystems to survive and continue to provide important goods and services to the local communities. The main threat to Sungai Pulai comes from the industrial, agricultural activities in the straits, coupled with unplanned tourism, hunting, and water activities.
1.4 Aim of The Study

The study aims to propose the wetlands conservation and management plan areas for Johor Ramsar site Sungai Pulai.

1.5 Objectives Of The Study

There are several objectives of this study which include;

i. To assess and evaluate the wetlands components including physical environment, biological environment, and landuse through the primary and secondary data.

ii. To identify areas for conservation in Sungai Pulai through Properly Functioning Criteria (PFC) Assessment and Matrix Analysis.

iii. To strengthen the wetlands function as the Environmental Sensitive Area (ESA) and develop zoning plans for its conservation

iv. To recommend mitigation measures to minimize potential impact of the project in the study area.

v. To identify zones according to size by using layering analysis techniques.

1.6 Significance of The Study

This study was carried out because most previous research works have only focused on identifying potentials of the area, without looking at its environmental effects. On the other hand a significant number of preceding researches have tended to use the conventional methods of planning and evaluation.
Recently, society has begun to appreciate the benefits of mangroves and there is a growing awareness of their values such as coastal protection, coastal subsistence of coastal dwellers and commercial fisheries. There are also increasing efforts by governments, NGOs and local communities around the world to conserve, rehabilitate and manage mangroves sustainably, but the literature and success stories are still limited.

Recognition of the environmental, social and economic impacts associated with the decline and degradation of mangroves are now being addressed through legislative, management, conservation and rehabilitation efforts aimed at mitigating the negative impacts of development on mangrove ecosystems. These include the introduction of new legislation and new governing bodies with clearer administrative or advisory roles on environmental issues; stronger conservation status for some mangrove areas of outstanding value (e.g. as Biosphere Reserves); and more emphasis on public awareness raising and education.

However, many of the current management policies adopted are still sectoral in nature, which frequently leads to conflict of interests, and to continuing unsustainable exploitation of mangrove resources. An integrated approach to coastal area and river basin/watershed management through coherent policy development and concerted action is increasingly being regarded as the best way to achieve conservation and sustainable use of mangrove and other coastal resources.

As part of valuable natural resource, mangrove forests are highly productive ecosystems that typically dominate the intertidal zone of low energy tropical and subtropical coastlines (Kathiresan & Bingham 2001). In all continents mangroves are distributed world-wide and FAO (2007) estimates that the total area for mangroves are 15.6 to 19.8 million ha. In 2006, mangrove forests area in Peninsular Malaysia is estimated to be about 107,802 hectares (ha), of which 82,091 hectares have been gazetted as Permanent Reserved Forests (PRFs).

In addition, Malaysia has 2.12 million hectares of national and state parks, wildlife sanctuaries, turtle sanctuaries and wildlife reserves. Some 3.43 million hectares are also protected as water catchments area (Sorensen, 2002). Recently there
is a regional conference on biological diversity that took place from 9-20 February 2004, at the Putra World Trade Centre in Kuala Lumpur, Malaysia. Over 2,300 participants attended, representing 161 governments, as well as UN agencies, non-governmental organizations (NGOs), intergovernmental organizations (IGOs), indigenous and local communities, academia and industry.

The main causes for loss of biodiversity in Malaysia are habitat destruction, over harvesting and pollution. As of early 1995, the National Policy on Biological Diversity was in the final phase of formulation before being endorsed by the Cabinet. The aim of this national strategy is to maintain plants and animals in their original habitats as well as outside of their original habitats in facilities such as botanical gardens. The purpose is to ensure long-term food security and preservation of the unique biological heritage of Malaysia (Natural Resources Aspect of Sustainable Development in Malaysia, 2000).

1.7 Scope on The Study

The study will focus on the physical assessment of the wetlands, i.e. biodiversity value of the study. It will focus on identifying potential areas and areas that needs to be conserved in the wetlands area. This study will identify potential areas for development; at the same time locating environmentally sensitive areas that needs to be conserved. Considering the project objectives, the methodology will be looked at from two perspectives, i.e. conservation and development. The data collection procedure will mainly be based on secondary sources with partial primary investigation of the study sites.

One of the main objective is to assess whether a riparian-wetlands area is functioning properly. In order to assess the wetlands area, there is an important process for Assessing Proper Functioning Condition (PFC). PFC is not intended as a design tool, but can be used as a guide to develop management strategies. The
process will be supported by The Ecosystem Management Framework. It will be identified through matrix of Interim Marine and Coastal Regionalisation (IMCR) (i.e. is an ecosystem-based classification for marine and coastal environments and Vegetation Assets, States and Transitions (VAST) framework).

1.8 Limitation on The Study

This project will be restricted to evaluate the existing environment and identifying conservation areas through zoning. The study will also be dependent on secondary data, with partial primary data based on investigations of the study sites. Another limitation is in the technique used in data analysis. This technique (pair wise comparison method) has the capacity of comparing only two criteria at a time. Moreover the highly subjective nature of preference weights and rapid elicitation of the method can lead to issues of validity.
REFERENCES:

Aquaculture Department Southeast Asian Fisheries Development Center (2005), *Code of Practice for Sustainable Use of Mangrove Ecosystems for Aquaculture in Southeast Asia*, Government of Japan

Camille Bann (1999), *A Contingent Valuation of the Mangroves of Benut, Johor State, Malaysia*, Johor State Forestry Department /DANCED/Darudec

Government of Malaysia (2009), *Managing Biodiversity in the Landscape ; Guidline for Planner, Decision Makers and Practitioners*, The Ministry of Natural Resources and Environment

Mangrove Action Project (2011), The Need For Ecological Mangrove Restoration (EMR), Concept Note: Ecological Mangrove Restoration and Training in Latin America & Asia

Murugadas TL (2002), Developing a Proposed Framework for a Wetland Inventory, Assessment and Monitoring System (WIAMS) in Malaysia, The Dutch Ministry of Foreign Affairs

Macintosh & Ashton (2002), A Review of Mangrove Biodiversity Conservation and Management, Centre for Tropical Ecosystems Research

V. C. Chong (2006) Sustainable utilization and management of Mangrove ecosystems of Malaysia, *University of Malaya*,
