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Abstract 
Similarity search in time series data is an active area of 
research in data mining. In this paper we introduce a new 
approach for performing similarity search over time series 
data using second moments denoted by us as time 
weighted moments. This technique is based on the 
observation that similar time sequences will have their 
centroids close to each other. The proposed technique is 
capable of handling variable length queries. It works 
irrespective of global scaling and shrinking of time series 
data and can also handle different baselines..   

Keywords:  Data mining, Knowledge discovery, Temporal 
data, Time series data mining, Similarity search in time 
series data, Information retrieval. 

1 Introduction 
Much of the scientific and business data stored in 
computers is time series data. Some typical examples 
include financial data, biomedical data, and climate data. 
In the last decade, there have been several attempts to 
model time series data, design query languages for it, and 
to develop access structures for efficient storage and 
retrieval of time series data. The problem of similarity 
search in time series data is non-trivial.  

Similarity search on time series data requires indexing 
methods that are capable of supporting efficient retrieval 
and matching of time series data. Most of the indexing 
methods for multi-dimensional data such as the R-tree 
(Guttman 1984) and the R*-tree (Beckmann 1990) 
degrade performance at dimensionalities greater than 8-
10 (Kanth, Agrawal, and Singh 1998) and eventually 
perform almost like sequential scanning algorithms at 
high dimensionalities. Thus, to utilize multi-dimensional 
indexing techniques, it is essential to first perform 
dimension reduction on time series data. Dimension 
reduction maps high-dimensional data to a lower 
dimension space. Next, some distance measure such as 
the Euclidean Distance may be used to calculate the 
distance and hence the similarity between any two time 
sequences. 
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Most of the approaches for performing similarity search 
in time series data developed so far rely on dimension 
reduction. This may lead to loss of information of some 
kind. 

There are several ways of performing dimension 
reduction on time series data.  Some of the commonly 
used methods include Discrete Fourier Transform (DFT)   
(Agrawal, Faloutsos, and Swami, 1993, Kamel, and 
Faloutsos 1994, Chu, and Wong 1999, Faloutsos, 
Jagadish,  Mendelzon and Milo, T. 1997), Discrete 
Wavelet Transform (DWT) (Refiei 1999, Chan and Fu 
1999, Kahveei and Singh 2001, Struzik and Siebes 1999), 
Singular Value Decomposition (SVD) (Korn,  Jagadish 
and Faloutsos 1997) and Piecewise Aggregate 
Approximation (PAA)  (Yi and Faloutsos 2000).  

The DFT is well suited for naturally occurring signals, 
which are sinusoidal in nature, but is ill suited for others.  

The most commonly used Wavelet Transform for 
dimension reduction is the Haar wavelet transform. The 
basis function for Haar is not smooth and as a result the 
Haar wavelet transform approximates any signal by a 
ladder like structure. Thus the Haar wavelet transform is 
not likely to approximate a smooth function using only a 
few coefficients. So the number of coefficients to be 
added must be high.  

The SVD technique uses the KL transform for performing 
dimension reduction. The key weakness of this approach 
is that the SVD is data dependent. This means that it uses 
the dataset to determine new basis vectors. So it has to be 
recomputed whenever a database item is updated.  

In case of PAA, the time sequence is divided into equal 
length segments. The corresponding feature sequence 
comprises mean values of each segment.  But the means 
representing each segment give only a rough 
approximation of each time sequence. 

In this paper, we assume that a time series consists of a 
sequence of real numbers which represent the values of a 
measured parameter at equal intervals of time. We 
introduce a new technique for similarity search in time 
series databases using second moments also denoted as 
time weighted moments in this paper. The introduced 
technique is based on the assumption that similar time 
sequences will have their centroids close to each other. In 
the approach proposed here, we will use second moments 
to obtain the centroids. The second moments have been 
used as they provide weights to the locations of the 
measured parameter along the x-axis (time axis in this 
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case). This helps to exaggerate the similarity 
(dissimilarity) measure computed in our approach. In our 
approach, we use a simple procedure to equalize the 
lengths of different time sequences along the time axis 
without distorting the data. Thus the proposed technique 
is capable of handling variable length queries on time 
series data. It can also handle time scaling, amplitude 
scaling or a combination of both.  The performance of the 
proposed technique is independent of the number of 
datapoints in the candidate or query time sequences. 

The rest of the paper is organized as follows. Section 2 
gives related work. Section 3 describes the proposed 
approach. In Section 4, we give experimental results of 
the proposed technique using test data and Section 5 
covers the case study. Finally, conclusions and directions 
for future work are covered in Section 6. 

2 Related Work 
In this section we briefly discuss some key approaches 
for performing similarity search in time series data based 
on dimension reduction. 

Agrawal, Faloutsos and Swami (1993) used the Discrete 
Fourier Transform to perform dimension reduction. The 
DFT was used to map the time sequences to the 
frequency domain and the index so built was called the F-
index. For most sequences of practical interest, the low 
frequency coefficients are strong. Thus the first few 
Fourier coefficients are used to represent the time 
sequence in frequency domain. These coefficients were 
indexed using the R*-tree (Beckmann, Kriegel, Schneider 
and Seeger 1990) for fast retrieval. The basis for this 
indexing technique is Parseval’s theorem.  

The F-index may raise false alarms but does not introduce 
false dismissals. The actual matches are obtained in a 
post-processing step wherein the distance between the 
sequences are calculated in the time domain and those 
sequences which are within ∈ distance are retained and 
the others are dismissed. The F-index typically handles 
whole matching queries. 

The F-index method was generalized by Faloutsos, 
Ranganathan and Lopoulos (1994) and called the ST-
index. In this technique, subsequence queries are handled 
by mapping data sequences into a small set of 
multidimensional rectangles in feature space. These 
rectangles are indexed using spatial access methods like 
the R*-tree (Beckmann, Kriegel, Schneider and Seeger 
1990). 

A sliding window is used to extract features from the data 
sequence resulting in a trail in the feature space. These 
trails are divided into sub-trails which can be represented 
by their Minimum Bounding Rectangles (MBR). Thus, in 
place of storing all the points in a trail, only a few MBRs 
are stored. When a query is presented to the database, all 
the MBRs intersecting the query region are retrieved.  

Chan and Fu (1999) proposed to use the DWT in place of 
DFT for performing dimension reduction in time series 
data.  Unlike the DFT which misses the time localization 
of sequences, the DWT allows time as well as frequency 
localization concurrently. The DWT thus bears more 

information of signals in contrast to DFT in which only 
frequencies are considered. The approach used by Chan 
and Fu (1999) employed the Haar Wavelet Transform for 
mapping high-dimensional time series data to lower 
dimensions. 

A data dependent indexing scheme was proposed by Yi 
and Faloutsos (2000) and is known as the SVD method 
for dimension reduction. The database consists of n-
dimensional points. We map them on a k-dimensional 
subspace, where k < n, maximizing the variations in the 
chosen dimensions. An important drawback of this 
approach is the deterioration of performance upon 
incremental update of the index. Therefore the new 
projection matrix should be calculated and the index tree 
has to be reorganized periodically to keep up the search 
performance. 

In PAA (Faloutsos, Ranganathan, and Lopoulos 1994) 
each time sequence say of length k is segmented into m 
equal length segments such that m is a multiple of k. The 
averages of segments together form the new feature 
vector for the sequence. The correct selection of m is very 
important because if m is very large, the approximation 
becomes very rough but if m is very small, the 
performance deteriorates. 

3 Proposed Approach 
We propose to use centroids for similarity search in time 
series data. Our approach is based on the idea that similar 
time sequences will have their centroids close to each 
other. Ideally, for a exact match between the query and 
candidate time sequences, the distance between their 
centroids would be zero. In the following section, we 
define second moments and centroids. 

3.1 Second Moments (Time Weighted 
Moments) and Centroids 

The second moment of an area A about the y-axis is given 
as (Streeter and Wylie 1997): 

∫=
A

2
y dAxI                                                                         (1)                   

The integration is carried out over the area. The centroid 
axis perpendicular to the y-axis is obtained as: 
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Similarly, the second moment of area A about the x-axis 
is given by: 

∫=
A

2
x dAyI                                                                         (3)  

and the corresponding centroid axis perpendicular to the 
x-axis is given by: 

dAy
A
1y

A
c       2∫=                                                              (4) 

The point of intersection of the centroidal axes is called 
the centroid of the area.  



In the proposed approach, we perform some data pre-
processing steps so as to facilitate centroid computation. 
It is assumed here that the time series database consists of 
n time sequences designated by X1, X2… Xn. Each time 
sequence Xi in turn can be represented as < (ti1, yi1), (ti2, 
yi2)… (tin, yin) >. 

The first step in data pre-processing involves scaling of 
each of the candidates Xi in the time series database along 
the time axis. This is done to equalize their time axes to 
some desired value say td. Thus their time axes become 
equal. The selection of td is done by the user and may 
depend on the domain of application of the data. In our 
technique, scaling along the time axis is done to help 
compare variable length time sequences. For example, a 
5-year sales pattern of a Company A can be compared to 
a 10-year sales pattern of Company B. Another example 
where scaling can play a crucial role is the comparison of 
the growth of a tumour for the past 10-months versus the 
growth of the tumour for past 10-days.  In order to avoid 
any distortions that may arise due to aforesaid scaling 
along the time-axis, the values along the y-axis for each 
Xi are also scaled proportionately. Each transformed Xi 
denoted by Xi’’  may be represented as <(ti1

’, yi1
’), (ti2

’, 
yi2

’)… (tin
’, yin

’) > where: 

tik
’ =  tik  *  ( td / tin ) and  yik

’ = yik * ( td / tin )                 (5) 

The next step involves vertical shifting of all the time 
sequences (candidates as well as the query time 
sequences) so that their initial y-coordinate values 
coincide. This may result in vertically shifting up of some 
time sequences and downwards of some others. This step 
is necessary for uniform basis of comparison of moments 
and centroids for the time sequences under analysis. Thus 
X1 becomes X1

’ where X1
’   is represented as < (ti1, yi1 + ys), 

(ti2, yi2+ ys)… (tin, yin+ ys) > where ys is the vertical shift 
which may be positive (moving the sequence up) or 
negative (moving the sequence down).  

To facilitate moment computation we want that ( yij+ ys ) 
be positive always. Or in other words we want the values 
of the measured parameter along the y-axis to be positive 
always. So we subtract from the y-coordinate values of all 
the time sequences under analysis, a quantity denoted by 
ymin where  ymin is the minimum value for (yij+ ys) across 
all the time sequences under analysis. Thus X1

’  becomes 
X1

’’ where X1
’’is given by < (ti1, yi1 + ys - ymin), (ti2, yi2+ ys - 

ymin)… (tin, yin+ ys - ymin) > . The result is that we get 
values for the y-coordinate which are all positive for each 
of the time sequence being analyzed. Also, each time 
sequence has the same initial value for the y-coordinate. 
This completes the pre-processing of the time series data 
in our approach. 

For simplicity of notations, we will henceforth designate 
the transformed y-coordinate values as y1 for (yi1 + ys - 
ymin) ,  y2  for ( yi2+ ys - ymin) and so on.  

The centroids of the time sequences are now calculated 
for assessing the similarity of the time sequences under 
question. For this we need to calculate moments as in (1) 
and then the centroid as given by (2) can be computed as 
( )∑ ∆AtA   1 2 . 
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Figure 1: Division of the transformed time series into 

n equi-width strips each having width ∆ t 

For this we divide each time sequence into small equi-
width strips as shown in Figure 1. Let the total moment 
for each time sequence be denoted by Mx where Mx  is 
given by: 

Mx  =  ∆ t . y1. t1
2 + ∆ t. y2. t2

2   +…+ ∆ t .yn. tn
2           

Or simply,  Mx = ∆ t ∑ yi .ti
2

  for i = 1 to n                     (6) 

Here, width of each strip is given by ∆ t and the area of 
the strip is given as yi. ∆ t where ∆ t is a constant and is 
given by ∆ t = ti+1 – ti . Thus the centroidal axis along the 
y-axis is given by: 

tc =  (  ∆ t ∑  yi .ti
2 ) /  ( ∆ t ∑  yi ti ) for i = 1 to n           (7) 

Or,  tc = ∑ yi .ti
2 / ∑ yi ti                                                                             

Similarly using (3) and (4), we obtain the centroidal axis 
parallel to the x-axis denoted by yc .The intersection of 
the centroidal axes denoted by tc and yc constitutes the 
centroid for any given time sequence. The closer the 
centroids are to each other, the similar are the time 
sequences. 

The overall strategy thus involves the following steps: 

Data pre-processing: Scaling of data along the time-axis 
and correspondingly scaling the values of y ordinate to 
avoid any possibility of data distortions (This is done to 
allow variable length queries). Vertically shifting the time 
sequences (candidates as well as the query time sequence) 
so that their initial y-coordinate values coincide (This 
brings the time sequences to the same baseline). Making 
the values of the measured parameter along the y-axis 
positive (This facilitates centroid computation). 

Centroid computation: Computation of moments and 
centroids using the pre-processed data obtained from 
previous step for assessing similarity in time series data. 

4 Experimental Results 
We have evaluated the performance of the proposed 
technique by considering synthetic sample time 
sequences as the test data. The data used in this section 
has been designed especially so that it includes a variety 
of similar and reverse trend curves. Some of the curves 
considered here are enlarged or compressed versions of 
others. Such curves will help demonstrate the ability of 
our method to handle global scaling or shrinking of time 
sequences. We have generated 6 sets of synthetic curves 
namely A, B, C, AR, BR, and CR (the latter three are 
reverse of the former ones). 



The first set of sample data considered are shown in 
Figure 2.  The dataset has been scaled both along the x-
axis and correspondingly along the y-axis taking td  =  5 
(shown in Figure 3). This value for td has been selected 
randomly. The scaled time sequences are designated by 
A1T, A2T, A3T, and A4T. All the time sequences have 
been vertically shifted so that their initial value along the 
y-axis is say 3.2 which is initial value for A2T. The 
resulting time sequences are designated by A1T’, A2T’, 
A3T’ and A4T’ and are shown in Figure 4. Finally, the 
data sequences of Figure 4 have been vertically shifted as 
shown in Figure 5 so that all of them have their y-values 
positive. In this case, the minimum value of y across all 
the time sequences is –5.5. So the sequences have been 
vertically translated by +5.5 to obtain A1F, A2F, A3F, 
and A4F. Taking A1F as the query, it is clear visually 
from Figure 5 that A2F is nearest to A1F and A4F is 
farthest.  

The centroid calculations have been shown in Table 1. 
The distance of the centroid of A1F from A2F, A3F and 
A4F quantitatively confirm the conclusions made from 
Figure 5. Thus we may conclude that A2 is most similar 
to A1 whereas A4 is most dissimilar to A1. 

The next time series dataset under consideration has been 
shown in Figure 6. The dataset has been scaled both 
along the x-axis and correspondingly along the y-axis 
taking td  =  5  (shown in Figure 7). Next, they have been 
shifted vertically as shown in Figure 8 so that all of them 
have their initial y-value as 3 which is the initial y-value 
for A2RT.  

Finally all the time sequences in dataset AR have been 
translated vertically by +0.24 as the minimum y-value 
across all sequences in this dataset is –0.24. This is shown 
in Figure 9. Table 3 shows the centroid calculations for 
this dataset and Table 4 shows the distance computations 
between the centroids. It is evident from Figure 9 that 
A1RF (taken as query) is closest to A3RF. Table 4 has 
confirmed the same conclusions. Thus it can be 
concluded that by our approach A3R is most similar to 
A1R (taken as query) as their centroids are very close to 
each other. On the contrary, A1 is very dissimilar to A1R 
as indicated by their centroids.  

 
Figure 2: Time series dataset A 

 

 
Figure 3: Scaled time series dataset A with td = 5 

 

 
Figure 4: Scaled time series dataset A with td = 5 and 

initial value of y = 3.2 

 
Sequence  tc yc 

A1F 3.38 9.62 
A2F 3.43 10.06 
A3F 3.32 7.57 
A4F 2.11 1.95 

Table 1: Centroids for the time sequences A 

 
Figure 5: Final pre-processed time series dataset A 

 

 



The next time sequence dataset B is shown in Figure 10. 
Its finally pre-processed form is shown in Figure 11. 
Table 5 shows the centroid computations and Table 6 
shows the distance of the centroid of B1F (taken as 
query) from B2F, B3F and B4F.  

 

 
Figure 6: Time series dataset AR (A Reverse) 

 

 
Figure 7: Scaled time series dataset AR with td= 5 

 

 
Figure 8: Scaled time series dataset AR with td = 5 and 

initial value of y = 3.0 

 
Figure 9: Final pre-processed time series dataset AR 

 
Sequence  tc yc 

A1RF 3.73 11.73 
A2RF 3.81 11.03 
A3RF 3.77 11.47 
A4RF 3.82 15.09 
A1F 1.88 0.59 

Table 3: Centroids for the time sequences AR 

 
Time 
sequence 
pair 

Distance between 
centroids  

Percentage 
difference in 
the distance 

between 
centroids 

( A1RF, 
A2R F) 

0.71 173.08% 

( A1RF, 
A3R F ) 

0.26 0% 

( A1RF, 
A4R F ) 

3.36 1192.31% 

(A1RF, 
A1F ) 

11.29 4242.31% 

Table 4: Distance between centroids for time 
sequences in dataset AR 

 
Figure 10: Time series dataset B 

 

 



 

 

Figure 11: Final pre-processed time series dataset B 

 
Sequence  tc yc 

B1F 2.82 1.98 
B2F 2.96 2.12 
B3F 2.65 1.78 
B4F 2.81 3.42 

Table 5: Centroids for the time sequences B 

 
Time 
sequence 
pair 

Distance between 
centroids  

Percentage 
difference in 
the distance 

between 
centroids 

( B1F, 
B2F) 

0.19 0% 

( B1F, 
B3F ) 

0.26 36.84% 

( B1F, 
B4F ) 

1.44 657.89% 

Table 6: Distance between centroids for time 
sequences in dataset B 

 
Figure 12: Time series dataset BR 

 

 

 

 
Figure 13: Final pre-processed time series dataset BR 

 
Sequence  tc yc 

B1RF 3.78 6.39 
B2RF 3.84 8.13 
B3RF 3.89 5.39 
B4RF 4.12 8.12 

Table 7: Centroids for the time sequences BR 

 

Time 
sequence 
pair 

Distance between 
centroids  

Percentage 
difference in 
the distance 

between 
centroids 

( B1RF, 
B2RF) 

1.74 72.28% 

( B1RF, 
B3RF ) 

1.01 0% 

( B1RF, 
B4RF ) 

1.79 77.23% 

Table 8: Distance between centroids for time 
sequences in dataset BR 

 
Figure 14: Time series dataset C 

 

 



 

 
Figure 15: Final pre-processed time series dataset C  

 
Sequence  tc yc 

C1F 3.08 1.67 
C2F 2.48 1.51 
C3F 3.11 1.89 
C4F 2.63 3.11 

Table 9: Centroids for the time sequences C 

 
Time 
sequence 
pair 

Distance between 
centroids  

Percentage 
difference in 
the distance 

between 
centroids 

( C1F, 
C2F) 

0.62 181.82% 

( C1F, 
C3F ) 

0.22 0% 

( C1F, 
C4F ) 

1.51 586.36% 

Table 10: Distance between centroids for time 
sequences in dataset B 

 

Figure 16: Time series dataset CR 

 

 

The distance between the centroids of B1F and B2F is the 
minimum and that between B1F and B4F is the 
maximum. We may thus conclude that, in turn B1 (taken 
as query) is most similar to B2 and least similar to B4. 
The same conclusions can also be made by referring to 
Figure 11. 

Figure 12 shows the time sequence dataset BR considered 
next. It is evident from Tables 7 and 8 that the centroid of 
B1RF (taken as query) is closest to that of B3RF and 
farthest from B4RF. Thus B1R (taken as query) is most 
similar to B3R and most dissimilar to B4R as is also 
evident from Figure 13. 

In Figure 14 the time sequence dataset C has been shown. 
Its finally pre-processed version is shown in Figure 15. It 
is evident from Tables 9 and 10 that the centroid of C1F 
(taken as query) is closest to that of C3F and farthest 
from C4F. Thus C1 (taken as query) is most similar to C3 
and most dissimilar to C4 as is also evident from Figure 
15. 

Figure 16 shows the time sequence dataset CR. Its finally 
pre-processed version is shown in Figure 17. It is evident 
from Tables 11 and 12 that the centroid of C1RF (taken 
as query) is closest to that of C3RF and farthest from 
C4RF. 

 
Figure 17: Final pre-processed time series dataset CR 

 
Sequence  tc yc 

C1RF 3.61 7.81 
C2RF 3.54 6.65 
C3RF 3.59 7.84 
C4RF 3.86 6.44 

Table 11: Centroids for the time sequences CR 

 
Time 
sequence 
pair 

Distance between 
centroids  

Percentage 
difference in 
the distance 

between 
centroids 

( C1RF, 
C2RF) 

1.16 2800.00% 

( C1RF, 
C3RF ) 

0.04 0% 

( C1RF, 1.39 3375.00% 



C4RF ) 

Table 12: Distance between centroids for time 
sequences in dataset CR 

Thus it can be concluded that C1R (taken as query) is 
most similar to C3R and most dissimilar to C4R as is also 
evident from Figure 17. 

5 Case Study 
In this paper, we have taken stock movement data (Yahoo 
Finance) as our case data. The reason for choosing this 
data for our study is that stock movements have been 
successfully modelled as random walks (Agrawal, 
Faloutsos and Swami 1993). Random walk data has been 
used very commonly for similarity search in time series 
data (Agrawal, Faloutsos and Swami 1993).  

The time series case data taken here consists of stock 
index movements for Dow Jones Industrial average (DJI), 
S & P 500 (SP), and NASDAQ Composite (NASDAQ) 
for all business days over a period of 4 months (last 
quarter) from September to December of each year from 
1999 to 2003. Each of the time sequence consists of 85 
datapoints. The index that has been studied is daily high. 
This data has been specifically studied keeping in view 
the effect of September 11, 2002 terrorist attacks in USA 
on movement of stock indices. 

The data has first been pre-processed explained in Section 
3. The transformed stock index data for daily high values 
in the last quarter of each year from 1999 to 2003 for 
NASDAQ is shown in Figures 18A and 18B respectively. 
The data for year 2003 has been taken as the query for 
similarity search and the others serve as candidates. The 
centroids have been shown in Table 13 and the distance 
between centroid of the query and candidate time 
sequences are shown in Table 14. It can be seen from 
Table 14 that the stock index movements in the last 
quarter of year 2003 is most similar to that for the year 
2002 whereas it is most dissimilar to the index movement 
for the year 2000. The same can be concluded from 
Figures 18A and 18B. 

The next set of data comprises of the variations of stock 
index (daily high) for DJI in the last quarter of each year 
from 1999 to 2003. The transformed data is shown in 
Figures 19A and 19B. The centroids are shown in Table 
15 and the distance computations between centroids are 
shown in Table 16. It is evident from Table 16 that the 
stock index movement in the last quarter of year 2003 is 
the most similar to that for year 1999 and is most 
dissimilar to that for year 2000. 

The same conclusions can be drawn after seeing Figures 
19A and 19B. 

The variations of stock index (daily high) for SP in the 
last quarter of each year from 1999 to 2003 have been 
considered next. The transformed data is shown in 
Figures 20A and 20B. The centroid computations are 
shown in Table 17 and the distance between centroids are 
computed in Table 18. It can be concluded from Table 18 
that the stock index movements for last quarter of year 
2003 is most similar to that for the year 1999 and most 

dissimilar to the year 2000. The same can be concluded 
from Figures 20A and 20B. 
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Figure 18A: Final pre-processed NASDAQ stock 
index data (daily high) from September to December 
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Figure 18B: Final pre-processed NASDAQ stock index 
data (daily high) from September to December 

 
Sequence  tc yc 

1999 60.23 81415.36 
2000 45.30 16650.06 
2001 58.48 58184.32 
2002 57.55 56757.38 

2003(Query) 57.27 57166.98 

Table 13: Centroids for time sequences indicating 
stock index movement for NASDAQ 

 
Time 
sequence 
pair 

Distance between 
centroids  

Percentage 
difference in 
the distance 

between 
centroids 

( 1999, 
2003) 

24248.38 5820.00% 

( 2000, 
2003 ) 

40516.92 9791.82% 

( 2001, 
2003 ) 

1017.34 148.37% 

(2002, 
2003) 

409.60 0% 

Table 14: Distance between centroids  
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Figure 19A: Final pre-processed DJI stock index data 
(daily high) from September to December 
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Figure 19B: Final pre-processed DJI stock index data 
(daily high) from September to December 

 
Sequence  tc yc 

1999 60.43 64445.35 
2000 57.17 37505.04 
2001 61.91 50242.09 
2002 58.72 54858.92 

2003(Query) 59.01 70831.25 

Table 15: Centroids for time sequences indicating 
stock index movement for DJI 

 
Time 
sequence 
pair 

Distance between 
centroids  

Percentage 
difference in 
the distance 

between 
centroids 

( 1999, 
2003) 

6385.90 0% 

( 2000, 
2003 ) 

33326.21 421.87% 

( 2001, 
2003 ) 

20589.16 222.42% 

(2002, 
2003) 

15972.33 150.12% 

Table 16: Distance between centroids  

 

Time

Index value (daily high)

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

2000 - SP  Quarter 4 (Daily high)
2002 - SP  Quarter 4 (Daily high)
2003 - SP  Quarter 4 (Daily high)  

Figure 20A: Final pre-processed SP stock index data 
(daily high) from September to December 
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Figure 20B: Final pre-processed SP stock index data 
(daily high) from September to December 

 
Sequence  tc yc 

1999 60.19 10212.26 
2000 48.99 2450.23 
2001 59.90 7123.23 
2002 58.19 7053.12 

2003(Query) 58.44 8794.77 

Table 17: Centroids for time sequences indicating 
stock index movement for SP 

 
Time 
sequence 
pair 

Distance between 
centroids  

Percentage 
difference in 
the distance 

between 
centroids 

( 1999, 
2003) 

1417.49 0% 

( 2000, 
2003 ) 

6344.55 347.59% 

( 2001, 
2003 ) 

1671.54 87.89% 

(2002, 
2003) 

1741.65 22.87% 

Table 18: Distance between centroids  

 

 

 



6 Conclusions and Further Work 
In this paper, a new and simple technique for performing 
similarity search in time series data using second 
moments (denoted as time weighted moments by us) has 
been proposed. We have assumed that the time series is 
comprised of a sequence of values representing a single 
measured variable.  In the proposed approach, we apply a 
set of pre-processing steps to transform the given time 
series data and then calculate centroids using time 
weighted moments. The centroid points help us in making 
conclusions about the similarity of the time sequences. 
The proposed technique is capable of handling variable 
length queries and different baselines. It also works 
irrespective of global scaling of the data. The proposed 
approach does not involve any dimension reduction and 
hence the data distortions arising out of it are avoided.  
The paper also includes a case study on stock index 
movements. 

For future work, we intend to extend our approach to 
multi-variable time series data in our approach. Also, we 
intend to develop a basket of parameters which may be 
used individually or in combination to assess similarity in 
time series data. One such parameter currently being 
studied by us is the variations in slopes of time 
sequences. Although, coincidental matches of the 
centroids is a remote possibility but it is intended to 
devise a basket of parameters which when used in 
conjunction to each other will completely rule out any 
such matches. 
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#


I have time series of parameters A, B, C and D. All of them are under influence of the same major conditions, but each one has minor
differences. They are placed in different locations, A, B, C are in local1 and D is in local2. I would like to know which one (A, B, C) has
the major similarity to D. How should I approach this issue? python classification data-mining time-series pandas. share | improve this
question |. follow. | asked Dec 19 '16 at 11:22.


